
1

Assumption: Express, part21, SDAI is going to be used for this.

• Usage of the CONNOTATIONAL SUBTYPE of Express2

• Overview of SDAI with a the perspective of the complete Java
binding (WG11/N060)

• The mapping extensions of the SDAI_dictionary_schema and
associated operators

– WG11/N050 SDAI Mapping Schema

– WG11/N051 SDAI Mapping Schemas II

– WG11/N068 Requirements for the next version of SDAI

– WG11/N075 Mapping Operations for the SDAI

• Data conversion: AIM <=> ARM <=> EPISTLE
but not: AIM <=> EPISTLE

Lothar Klein, LKSoftWare GmbH, lothar.klein@lksoft.com
1999-04-22 ISO TC184/SC4/WG10

What can an extended SDAI do for a new Integration Model ?

Thing

Relation

Classification Class

Thing

Relation

Class
classifications S[0:?]

Simplify the implementation of classification

From:

To:

Assumption: Classification of a thing needs not to be not referenced

2

ENTITY engine
...

END_ENTITY

ENTITY car
...
motor: engine;

END_ENTITY

#5=engine(...)
#6=car(…, #5)

Application Model and Data

Use CONNOTATIONAL SUBTYPE

ENTITY engine CONNOTATIONAL SUBTYPE of (thing...)
DERIVE

...
END_ENTITY

ENTITY car CONNOTATIONAL SUBTYPE of (thing...)
DERIVE

...
motor: engine = … ;

END_ENTITY

-- A population of just this is meaningless:
#5=thing(())
#6=thing(())

3

Relative classification by defining a pattern for which to search

ENTITY engine CONNOTATIONAL SUBTYPE of (thing...)
WHERE

wr1: // SELF.classifications[i]-> class, class.name = ‘engine’
END_ENTITY

ENTITY car CONNOTATIONAL SUBTYPE of (thing...)
WHERE

wr1: // SELF.classifications[i]-> class, class.name = ‘car’
DERIVE

motor: engine // SELF<-composition.whole
(composition->classification[i]->class, class.name=‘motor_of_car’)

 composition.part->engine
END_ENTITY

-- This is similar to mapping tables in APs
where a pattern of data is defined.

#1=class((...), ‘engine’)
#2=class((...), ‘truck’)
#3=class((...), ‘car’)
#4=class((...), ‘motor_of_car’)

#5=thing((#1))
#6=thing((#2, #3))
#7=composition((#4), #5, #6)

-- Problem: What happens if there are several car classes?
#8=class((...), ‘car’)

4

SCHEMA automobile;

REFERENCE FROM core_schema;

CONST engine_class : class := class(); -- #1
car_class : class := class(); -- #2
truck_class : class := class(); -- #3
motor_of_car_class := class(); -- #4

ENTITY engine CONNOTATIONAL SUBTYPE of (thing...)
WHERE wr1: // SELF.classifications[i] = engine_class
END_ENTITY

ENTITY car CONNOTATIONAL SUBTYPE of (thing...)
WHERE wr1: // SELF.classifications[i] = car_class
DERIVE

motor: engine // SELF<-composition.whole
 (composition->classification[i] = motor_of_car_class)
 composition.part->engine

END_ENTITY

Absolute classification

Repository: automobile_schema_data

#1=class((...)) -- engine
#2=class((...)) -- truck
#3=class((...)) -- car
#4=class((...)) -- motor_of_car

Repository: user_data

#5=thing((#1))
#6=thing((#2, #3))
#7=composition((#4), #5, #6)

Problem: Part21 needs to handle
 references to external repositories / files

5

Entity Hierarchy

6

Application instances:
create, delete, validate

Attributes of Entity instances:
test, get

Attributes of Application instances:
set/create, unset

Members of aggregates:
test, get, set/add/create, unset/remove

Special operators to work on Session instances:
...
SchemaInstance - validate

Standard SDAI operators

SdaiRepositories:
import/export p21 files
create, find/access on a network

Full featured SDAI_dictionary_data:
expressions, functions, constants (PLIB 20)
supertype constraints (ANDOR, AND, ONE OF)
mapping information
use dictionary entities like application entities

New Mapping operations

Proposed Extended SDAI operators

7

AP1 ARM EXPRESS (partially)
Mapping and AIM see: William F. Danner, WG10N...

Conclusion

Mapping of on AIM into an EPISTLE model is cumbersome
because of the many intermediate entities which are
introduced through the IRs (exception e.g. part42)

Therefor it is more suitable to map the ARM Express
into an EPISTLE model.

Even for the “old” APs 201 and 203 prototype ARM-Express
schemas already exist (WG10N107, …, Phil Kennicott)

Use merged Express-2/Express-X functionality do document
the mapping and use this with new SDAI mapping functionality.

